摘 要 :
对于低频可再生能源的收集需要考虑其比较大的内部阻抗,不规则的断续输入,受环境干扰等问题。本研究采用多级反馈式稳压升压技术,嵌入低功耗控制芯片算法控制对低频输入能量的最大功率点进行跟踪(MPPT),同时超级电容器代替锂电池作为储能系统,应用互感耦合,从而达到高效收集、整流和输出的效果。因此本研究设计出的收集系统可高效地收集低频可再生能量,最大收集率可达91.16%,加入输入/输出隔离系统以提高带负载能力后其总收集效率达到了53.18%。
0 引言
新世纪以来,积极利用各类可再生能源发电已经成为应对环境和能源问题的主要解决方案。然而考虑到各类可再生能源分布广,受环境制约,其所产生的电能呈现断续式、幅度大、频谱广、阻抗大等特点[1]。尤其是低频耗散能量(如风能、潮汐能和人体运动机械能)以上特点更为鲜明,对该类能量的收集存储,需要更加高效的整流和耦合技术,传统的能源收集存储系统无法胜任。例如,目前普遍采用的基于铅酸或锂电池的储存系统,无法高效地收集此类能量[2]。针对低频耗散能源的特点,将能量收集系统与超级电容器模相结合,将极有可能克服新能源收集效率低的问题,高效将能量收集、储存并转化利用。因此,本研究采用升压/降压(BOOST/BUCK)电路、最大功率点跟踪(Maximum Power Point Tracking,MPPT)、互感耦合以及超级电容器储能等技术提高系统收集和带负载能力。
1 能量收集系统设计
为减小电路压降,电路中采用电压降较低的低压差线性稳压器、肖特基二极管和霍尔三极管元器件。设计的能量收集系统是用于对0~50 Hz高内阻、断续式的低频可再生能源进行收集存储,总体设计思路分为三部分:首先,针对需解决的问题设计出总体概况图,即针对0~50 Hz的杂散低频能量收集,先对其进行整流、滤波,其次利用微控制单元(Microcontroller Unit,MCU)实现MPPT控制,使其流经RC振荡器将直流电能转换成高频交流电能后通过互感、整流电路将电能输出,经互感耦合,可提高带负载能力;针对AC/DC和RC震荡系统电路原理做出详细的阐述;最后介绍了MPPT算法以及MCU总控制系统设计流程图。
1.1 总体设计框图
图1所示为低频可再生能源收集系统总框图,主要由整流、升压、储能、互感电路组成。D1为肖特基整流二极管,通过C1滤波电容对输入进行滤波。经AC/DC系统后交流电能转为直流电能。后经MCU程控的 BUCK/BOOST电路,调整输入功率点。MPPT算法后,可以获得最大输入效率。低功耗MCU可应用暂态储能超级电容器直接供电。输入能量转换成直流电能后,需进行DC/AC转换成高频(500 kHz以上)交流电能,再通过互感耦合,进行输出阻抗匹配。图1中Q1、C4、C5、L2、L3构成的典型LC振荡器,它将直流电能转换成高频交流电。L3、D3、C6为次级电感线圈、肖特基整流二极管和滤波电容,由于次级端L3阻抗较小(1 Ω~3 Ω),将感应的高频交流电再次转换成直流后(AC/DC)输出内阻较小(5 Ω~10 Ω),可提高带负载能力。
1.2 振荡系统设计
考虑低频可再生能源的收集内阻较大,如果使用LC振荡器电路中的电感值较大,不易集成,且电磁损耗大。本系统应用成本低、易集成、功耗相对较低的RC负阻振荡器[3](震荡频率0~70 kHz)代替LC振荡器。如图2所示震荡器主要由振荡发生器电路和阻抗匹配电路两部分组成[4],选频震荡网络通过调节R1、R2、C1、C2,并配合提高震荡稳定性的负反馈电路(RP、R3)来得到不同的输出振荡角频率ω如式(1)所示。
振荡器系统等效原理如图3所示。a、b点为从R2、C2两端向放大器端看去等效阻抗,要使电路满足起振相角条件Zab须满足式(2),A为放大器放大倍数,而放大器A须满足式(3)。
1.3 AC/DC、DC/DC整流升压系统设计
低频可再生能源受外界的影响,如对风能收集因风速的不同,需要实时调整电路输入电压和风力发电机转速,即需要MPPT[5]控制。如图4所示,电路应用BOOST/BUCK电路代替单一的升压或降压电路[6],提高调控范围。
。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
版权声明:网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时联络我们,采取适当措施,避免给双方造成不必要的经济损失。