ADI专利的容性可编程增益放大器(PGA)相比传统的阻性PGA具有更佳的性能,包括针对模拟输入信号的更高共模电压抑制能力。
本文描述了斩波容性放大器的工作原理,强调了需要放大传感器小信号至接近供电轨——比如温度测量(RTD或热电偶)和惠斯登电桥——时,此架构的优势。
Σ-Δ型模数转换器(ADC)广泛用于传感器具有较小输出电压范围和带宽的应用中(比如应变计或热敏电阻),因为这种架构提供高动态范围。具有高动态范围是因为,相比其它ADC架构,它具有低噪声性能。
Σ-Δ型转换器基于两条原理工作:过采样和噪声整形。当ADC对输入信号进行采样时,独立于采样频率的量化噪声会在直到采样频率一半的整个频谱内扩散。因此,如果输入信号以比奈奎斯特理论所推导出的最小值高很多的频率采样,则目标频段内的量化噪声下降。
图1显示了不同采样频率下的量化噪声密度示例。
![]()
图1.不同采样频率下,频率范围内的量化噪声密度。
一般而言,对于特定的目标频段,每2个过采样系数就会使动态范围改善3 dB(假定为白噪声频谱)。Σ-Δ型转换器的第二个优势是噪声传递函数。它将噪声整形至更高频率(如图2所示),进一步降低了目标频段内的量化噪声。
![]()
图2.Σ-Δ噪声整形。
此外,Σ-Δ架构可能集成数字滤波器,用来移除目标频段外的量化噪声,实现出色的动态范围性能,如图3所示。
![]()
图3.LPF之后的量化噪声。
输入缓冲器
过采样架构的缺点之一是,相比其它采样频率较低的架构,驱动Σ-Δ型调制器的输入缓冲器要求可能会更严格。采集时间变得更短,因此缓冲器需要更高带宽。现代Σ-Δ型转换器片上集成输入缓冲器,最大程度简化使用。
此外,在检测系统中,为检测元件提供具有高精度的极高输入阻抗对于测量精度而言极为关键。这使得输入缓冲器的要求更为严格了。
集成输入缓冲器还有其它挑战。Σ-Δ型调制器可在低频率时提供极低噪声,但所有其它元件(比如输入缓冲器)都会使热噪声增加,而更严重的则是低频闪烁噪声,如图4所示。
![]()
图4.闪烁噪声。
此外,缓冲器失调也可能增加总系统误差。通过系统校准可以补偿失调,但如果失调漂移相对较高,那么这种方式就无法实现,因为每次工作温度发生改变都会要求系统重新校准,以补偿缓冲器失调。
。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
版权声明:网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时联络我们,采取适当措施,避免给双方造成不必要的经济损失。